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Abstract-Large scale distributed system has become the 
fundamental platforms for many real-world production 
systems.  However, Automatic and continuous management of 
such distributed computing infrastructures  is a challenging 
task since solution has to  achieve both scalability and high 
precision while monitoring a large number of intra-node and 
inter-node attributes (e.g., CPU usage, free memory, free disk, 
inter-node network delay). In this paper we focus on specific 
domain that is fine-grained, scalable, failure resilient 
distributed system monitoring framework based on video 
coding techniques. This approach models the distributed 
system metrics as an image and uses both intra-image and 
inter-image encoding to compress monitoring traffic.  
In this article, we highlight the  importance of fine grain 
monitoring and scalability challenge of fine-grained 
distributed system monitoring .We identify the state-of-the-art 
of scalability issues related to fine grained monitoring and 
discuss the various solutions proposed that are Centralized, 
Decentralize Monitoring, and Compression and correlation 
Based Approach. 
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I. INTRODUCTION 
The last few decades have seen computing becomes a 

part of our day to day life. Most of the applications 
nowadays use distributed computing paradigm in which the 
user accesses resources spread across different locations. 
Distributed computing Infrastructures like Planet Lab and 
world community Grid are serving as large-scale resource 
pools for scientific research. The world community grid 
depends upon individuals collectively contributing their 
unused computer cycles. Efficiently managing such large 
scale distributed system has become a challenging problem. 

Distributed monitoring system must be capable of 
tracking system information such as disk usage, CPU 
memory and bandwidth dynamically. Monitoring system 
need to know not only the various attribute values on a per 
node basis as well as the link information between various 
nodes. Two important factors, namely scalability and 
accuracy need to be addressed while designing the large-
scale distributed information management service. On one 
hand, quality-of-service (QoS) sensitive applications 
require accurate up-to-date distributed system information. 
On the other hand, a large-scale distributed system can 
include tens of thousands of geographically distributed 
nodes. The actual monitoring traffic for such a system 
would be in the range of 6.1Mb/sec at a sampling rate of 
ten seconds and 400 metrics collected per node. However, 

it is a challenging task to deploy fine-grained monitoring 
for large-scale hosting infrastructures due to scalability 
overhead.  

Obtain complete and fine-grained information regarding 
all hosts and network connections within the hosting 
infrastructure is necessary to achieve efficiency and 
accuracy. A production hosting infrastructure often 
comprises Thousands of physical hosts and many more 
virtual machines (VMs), each of which can be associated 
with hundreds of dynamic metrics Thus, without reducing 
the monitoring traffic to the management node; it is 
impractical to apply fine-grained monitoring to large scale 
hosting infrastructures [1]. 
Thus in this article we study how the Resilient, self-
Compressive Monitoring system (RCM) for large-scale 
hosting infrastructures monitoring perform better than 
exiting approaches in terms of scalable resilient monitoring. 
The System takes a novel image-based approach to 
alleviate the bottleneck on the management node by 
reducing monitoring traffic towards it. 
 

II. SOLUTIONS TO SCALABLE MONITORING 
A. Centralized Monitoring 

These systems perform data monitoring by aggregating 
information from a variety of sources and presenting it to 
system operators through some graphical user interfaces 
[4]. 
B .Decentralize Monitoring  

Decentralize architecture such as hierarchical 
aggregation or peer-to-peer structure is employed to 
distribute monitoring workload. 
Instead of expose all information to all nodes, hierarchical 
aggregation allows a node to access detailed views of 
nearby information and summary views of global 
information [6,7,8]. 
C. Correlation Based Approach 

Monitoring data typically have some redundancies that 
can be exploited to leverage correlation patterns to reduce 
monitoring cost. Temporal correlation is explored within 
one node (Self-similarity) and spatial correlation (group-
similarity) among distributed nodes to suppress 
unnecessary remote information update [11]. 
D. Offline /Online Compression Based Approach 

Offline compression schemes that can only be applied 
after the monitoring data have been reported to the 
management node whereas online compression schemes 
that can apply over live monitoring data streams during 
monitoring runtime [3]. 

Akshada Bhondave et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 4897-4901

www.ijcsit.com 4897



 

TABLE I-COMPARISON OF SYSTEM MONITORING TOOLS BASED ON SCALABILITY, SECURITY, AND 

ROBUSTNESS. 

Author /Website 
System 
Monitorin
g Tools. 

Monitoring 
Architecture/ 
Approach 

Features Results  

http://www 
01.ibm.com/software/Tivoli/2012 

IBM Tivoli Centralize 

Security: Through Tivoli Access Manage, 
Privacy & Risk Manager, IBM Directory Server 
&  Integrator 

Availability: Through Tivoli Enterprise Console 
, Storage Mgr Family, Tivoli System 
Automation Optimization, 

Less Scalable 

http://comon.cs.princeton.edu/.2012 CoMon Centralize Monitoring system for Planet Lab 

Renesse, 
Birman 
and 
Vogels 
(2003) 

Astrolabe Peer to peer 

Scalability: Through Zone hierarchy, 
hierarchical attribute aggregation 

Flexibility: Through mobile code, Dynamically 
installed aggregation functions 

Robustness: via a gossip-based peer-to-peer 
protocol, Self-management and recovery 

Security: through Certificates ,Integrity and 
write access control 

Astrolabe could scale to 
thousands and perhaps 
millions of nodes, with 
information propagation 
Delays in the tens of 
seconds. 

Yalagandula 
and 
Dahlin 
(2004) 

SDIMS Hierarchical 

Scalability: with respect to both nodes and 
attributes through a new aggregation abstraction 
that helps leverage DHT's internal trees for 
aggregation. 

Flexibility: Through a simple API that lets 
applications control propagation of reads and 
writes. 

Administrative Isolation : Through simple 
augmentations of current DHT algorithms 

Robustness: to node and network 
reconfigurations through lazy re-aggregation, 
on-demand re-aggregation, and tuneable spatial 
replication. 

Node Stress i.e. Amt. of 
incoming and outgoing 
information is less than 
Astrolabe 
 

Massie, 
Chun 
and 
Culler 
(2004) 

Ganglia Hierarchical 

Monitoring compute clusters 
Scalability: both as a function of cluster size and 
the number of clusters being federated. Tree of 
point-to point connection to federate cluster and 
aggregate their state. Multicast-based 
Listen/Announce protocol to monitor state 
within clusters. 

Scales on clusters of up to 
2000 nodes and federations 
of up to 42 sites. 

Liang, 
Gu 
and Nahrsteadt 
(2007) 

InfoEye 

Automatic    
Self 
Configuration 
 

Scalability: Through answering information 
queries With minimum monitoring overhead by 
utilizing the statistical patterns of application 
needs and system conditions to intelligently 
configure the information management system. 

Much lower management 
overhead than static 
solutions. 

Zhao, 
Tan 
and 
Xu 
(2009) 

InfoTrack 
Spatial 
& Temporal 
Correlation 

Scalability: Through lightweight temporal and 
spatial correlation discovery methods to 
minimize continuous monitoring cost. 

Applied to any centralized or decentralized 
monitoring architecture. 

Attribut
e 

CR 
% 
 

Error 
boun
d 

Stable 95% 0.01 

Dynamic 
50% 0.01 
90% 0.05 

Tan, 
Gu ,and 
Venkatesh 
(2011) 

OLIC 
Image Based 
Approach 

Scalability: Through novel image based 
approach to achieve scalable fine-grained 
hosting infrastructure monitoring based on video 
coding approach. 

Attribut
e 

CR
% 

Error 
boun
d 

Stable 
70% 0 
88% 0.01 

Dynamic 35% 0.01 
Tan, 
Gu ,and 
Venkatesh 
(2013) 

RCM 
Image Based 
Approach 

RCM extends OLIC by adding failure resilience 
support to achieve robust monitoring under host 
failures. 

Failure 
Rate 

q 
CR 
% 

10% 3 20-45 
30% 3 21-47 

J. Ziv and A. Lempel 
(1978) 

Gzip 

Offline 
Compression 
Based 
Approach 
 

Gzip is a lossless compression scheme which 
perform compression after the monitoring data 
have been sent to the management node 

RCM can achieve Similar 
compression ratios as Gzip 
for the Planet Lab inter-node 
delay data sets 

 

 
III. SYSTEM MONITORING TOOLS CLASSIFICATION 

There are various system monitoring tools are available 
to solve scalability challenge of fine-grained monitoring 
that are Centralized and Decentralize Monitoring, 
Correlation and Online/Offline Compression Based  

 
Approach . As shown in Table1 named “Comparison of 
system monitoring tools based on scalability, security, and 
Robustness “ compare the performance of  system 
monitoring tools on the basis of different features. 
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Following Result is observed from Table 1 
• Centralized systems do not scale to the required 

number of flows, while pure peer-to-peer 
architectures cannot provide a global view of the 
system state.  

• Decentralized, per-data-center, hierarchical 
monitors are limited to computing average 
measures spanning over several nodes.  

• Hierarchical monitors overcome some of the 
limitations of centralized solutions at the cost of 
limited system manageability but the root node in 
the system may present a single point failure 
similar to the centralized model. 

• Astrolabe is highly scalable and resilient. Its 
manageability is a complex task since it generates 
a lot of network traffic. 

• InfoEye achieve minimum monitoring overhead at 
the cost of losing some information coverage. 

• Temporal correlation has limited compression 
power while discovering spatial correlation is 
often costly due to the expensive clustering 
operation. 

 
IV. COMPRESSION ALGORITHMS 

A. Temporal Correlation Algorithm  
Temporal correlation algorithm that suppresses the 

monitoring updates if the last attribute value can be used to 
predict the current attribute value within the error bound. 
B. Spatial Correlation Algorithm  

Spatial Correlation Algorithm that uses the k- medoids 
clustering algorithm to group all monitored nodes into 
different groups. One node in the group (i.e., the cluster 
head, usually the medoid of each cluster) is elected as the 
representative node. Other cluster members do not need to 

send their updates if the difference between their values 
and the cluster head is within the error bound. 
C. Temporal+Spatial Correlation Algorithm  

Temporal+Spatial correlation algorithm developed by 
the InfoTrack system that leverages both temporal and 
spatial correlations among attribute values to suppress 
distributed monitoring Traffic [11]. 
D. Neighbor Search Algorithm  
Neighbor search algorithm that performs a similar 
reference block search as RCM but its search range is 
limited to eight immediate neighbor blocks (i.e., up left, up, 
upright, right, downright, down, down left, and left) in the 
reference image.  
E. Diamond Search Algorithm  

The diamond search algorithm utilizes two search 
patterns. One is the large diamond search pattern (LDSP) 
and other is the small diamond search pattern (SDSP).The 
LDSP searches nine blocks out of which eight surround the 
centre block to form diamond .SDSP searches five blocks 
Out of which four forms a smaller diamond around the 
centre block [12]. 

The experimental evaluation of the monitoring system 
has been done using real system monitoring data. As shown 
in Table 2 named “Statistics of the Monitoring Traces” 
shows the characteristics of different traces used to evaluate 
the Monitoring system.  

Data size is the total file size of each monitoring data 
trace. The coefficient of variation (CV) is defined as the 
ratio of the standard deviation ߪ	to the mean µ (i.e.,ܸܥ ߤ/ߪ=  .The data set with the smaller CV will have lower 
variations than other data sets. Length of each compression 
phase set to 300 system images, training rounds R and 
reference image both are set to 3 and block size set to be 
4[2]. 

 
TABLE II-STATISTICS OF THE MONITORING TRACES 

Data 
Trace 

Attribut
e 

Description 
System 
Image 

Dimension 

Total 
Data 
Size 

Coefficient 
of 

variation 

VCL IP 
Statistics  

Datagrams / 
Sec 

Intra-node attribute: 400 nodes, Mean: 38.69, 
Standard deviation: 82.58, Sampling interval: 5 
minutes 

20*20 18MB 1.53 

Planet 
Lab 
Memory 
(MB) 

Free 
Memory 

Intra-node attribute: 400 nodes, Mean: 107, Standard 
deviation: 42, Sampling interval: 10 seconds, Total 
data size: 744MB 

20*20 44MB 0.39 

VCL NT 
Processor 
Trace 

(DPC 
Queued/sec)  

Intra-node attribute: 400 nodes, Mean: 45.4, 
Standard deviation: 58.23, Sampling interval: 5 
minutes. 

20*20 36MB 1.33 

Google 
Cluster  

CPU Usage 
Intra-node attribute: 1296 nodes, Mean: 0.039, 
Standard deviation: 0.026, Sampling interval: 5 
minutes. 

36*36 86MB 0.68 

Traffic 
Matrices 
(Kbps) 

Traffic 
Inter-node attribute: 23 nodes, Mean: 17040, 
Standard deviation: 52578, Sampling interval: 15 
minutes. 

23*23 
126 
MB 

0.41 

Planet 
Lab 
Delay(ms) 

Inter-node 
Delay 

Inter-node attribute: 464 nodes, Mean: 241.8, 
Standard deviation: 58.9, Sampling interval: 10 
seconds. 

464*464 92GB 0.22 
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As shown in Table 3 named “Comparison of 
compression algorithms based on compression ratio under 
no host failure” [2] compared the performance of RCM, 
Neighbor search, Temporal, Temporal+Spatial algorithm 
on the basis of compression ratio.  

 
Following result is observed from Table 3: 

• RCM can achieve average compression ratio of 28.2-
48.8 percent under a range of tight error bounds (0.01-
0.1) for all these data sets. 

• RCM can improve the compression ratio by 24, 18, and 
46 percent on average compared to the Neighbor search 
algorithm, the Temproal+Spatial correlation algorithm, 
and the temporal correlation algorithm, respectively. 

• RCM can achieve more than 200 percent higher 
compression ratio over the temporal correlation scheme 
under tight error bounds (e.g., 0.01). 

• The neighbor search scheme is slightly worse than the 
Temporal+Spatial correlation scheme because it has a 
smaller reference block search range than the 
Temporal+Spatial correlation scheme. However, the 
neighbor search scheme still has the advantage over the 
Temporal+Spatial scheme since its computational 
overhead is much smaller. 

• RCM consistently outperforms the other alternative 
schemes for all the data sets because of its broader 

Search range of diamond search algorithm than temporal 
and spatial correlation schemes to search the best 
reference blocks. 
 
As shown in Table 4 named “Comparison of 

compression algorithms based on compression ratio under 
host failure” [2] compared the performance of RCM under 
certain percentage of host failures on the basis of 
compression ratio. 

 
Following result is observed from Table 4: 

• RCM can achieve better compression performance 
as the number of backup reference blocks 
increases. 

• RCM without any backup reference block only 
has 10-20 percent compression ratio loss 
compared to the non failure case.  

• RCM with one backup reference block can 
achieve similar compression ratio to the non 
failure case.  

• RCM with more than one backup reference block 
can achieve even higher compression ratio than 
the non failure case. 
 

 

 
 

TABLE III- COMPARISON OF COMPRESSION ALGORITHMS BASED ON COMPRESSION RATIO UNDER NO HOST 

FAILURE 

Sr. 
No 

Dataset 
Error Bound Between 0.01 to 0.10 

OLIC Neighbor Search  Temporal Temporal+ Spatial 

1 VCL NT Processor Trace 21-30 8-20 6-12 10-22 

2 VCL IP Statistics  18-23 5-14 3-8 7-15 

3 Planet Lab Memory (MB) 30-70 20-68 18-65 20-70 

4 Traffic Matrices (Kbps) 15-33 5-29 4-25 5-29 

5 Planet Lab Delay(Ms) 88-93 88-92 86-91 - 

6 Planet Lab CPU Load 21-80 18-80 16-80 18-81 

7 Google Cluster CPU Trace 13-18 7-13 5-8 7-13 
 
 

TABLE IV-COMPARISON OF COMPRESSION ALGORITHMS BASED ON COMPRESSION RATIO UNDER HOST FAILURE 
Sr. No         Dataset Failure Rate Number of Backup reference blocks (q) CR % 

1 
Google Cluster 

CPU Trace 

10% 

q=3 14-20 

q=2 13.5-19 

q=1 13-18 

q=0 12-17 

No Failure 13-18 

30% 

q=3 15-21 

q=2 14-19 

q=1 12-17 

q=0 10.1-14.2 

No Failure 12-17 
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V. CONCLUSION 
In this survey article, we try to scrutinize the scalability 

challenge of fine-grained monitoring in large scale hosting 
infrastructures. Because of a production hosting 
infrastructure often comprises thousands of physical hosts 
and many more virtual machines (VMs), each of which can 
be associated with hundreds of dynamic metrics Thus, 
without reducing the monitoring traffic to the management 
node, it is impractical to apply fine-grained monitoring to 
large scale hosting infrastructures. 

We briefly introduce the various solutions to scalability 
challenge of fine-grained monitoring. From Table 1 we 
observe that centralize monitoring is less scalable whereas 
Hierarchical monitoring results in of limited system 
Manageability. Exploring temporal correlation has limited 
compression power while discovering spatial correlation is 
often costly due to the expensive clustering operation In 
contrast, RCM uses lightweight, image-based reference 
block search algorithms to enable a broader search range so 
that the compression ratio can be significantly improved 
without imposing too much overhead .Table 3 and Table 4 
compared the performance of RCM, Neighbor Search, 
Temporal , Temporal+Spatial algorithm on the basis of 
compression ratio under no host failure and under host 
failure.  We observe that RCM can achieve average 
compression ratio of 28.2-48.8 percent under a range of 
tight error bounds (0.01-0.1) for all these data sets. From 
table 4 we observed that RCM can achieve better 
compression performance as the number of backup 
reference blocks increases. 

In future by applying a boarder search range by using the 
adaptive rood pattern search rather than the existing 
reference block search algorithms follows dual-diamond 
search patterns, proposed system can achieve higher 
compression performance by preventing unnecessary 
intermediate search. Furthermore, failure of host can be 
detected by using inter-node monitoring and management 
node failure can be handled using replica server which act 
as primary server when management node get fail. 
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